
Using A Text File Device
Driver As A String Parser
by Jon Q Jacobs

Extracting information from text
strings, into other strings or

numeric variables, for example, is
something we have all probably
spent many programming hours
on. Listing 1 shows a typical exam-
ple of the kind of thing I’m talking
about. Although Delphi and its an-
cestors have simple and effective
string manipulation abilities, some-
times I yearned for something a
little easier, or at least something
that looks less messy.

I looked wistfully at the fact that
using read or readln to pull a num-
ber from a text file did not require
the explicit removal of spaces. To
be sure, in order to process a num-
ber from string form into numeric
variables, the system must do
some kind of space-stripping or
space-skipping behind the scenes.
The fact remains that Borland al-
ready wrote that code and in-
cluded it in the compiler package. I
wanted to get access to it! Also
noteworthy was the ease with
which readln broke up a stream of
variable length data in a text file if
it was delimited by carriage re-
turns. Again, I know there is code
behind the scenes that performs
such manipulations (it doesn’t
happen by magic!).

How pleased I was when I ran
across the concept of the text file
device driver (TFDD). With the
TFDD, Borland very thoughtfully
provided hooks into their text file
handling system. As I read about
it, I came to realize that it was, as
the name implied, oriented to
‘devices’. So I dismissed the useful-
ness of the concept except for such
things as processing a stream of
data to and from a temperature
controller through an intelligent
serial card. Use it for a ‘device’ in
other words. At last I awoke to the
fact that I could interpret ‘device’
more generously. Imagine an ordi-
nary Pascal-style string as a device.

I will now endeavor to explain my
string device driver (you will find
more about TFDDs in general in
Brian Long’s article last month).

Assign A Relationship
Delphi uses an AssignFile proce-
dure to make an association be-
tween a filename (the device) and
a variable of type Text. There is a
procedure called AssignCrt which
associates the screen with a Text
variable. This is one example of a
TFDD that maps something be-
sides a disk file to a Text variable.
Usually an assign procedure takes
two parameters: the Text variable
and something that identifies the
device. In the case of AssignFile the
second parameter is the name of
the disk file to be used. For its inner
workings the AssignFile procedure
uses MS-DOS system calls to com-
plete the association (make no

mistake, Windows 95 contains a lot
of good old MS-DOS code).
AssignCrt, on the other hand, does
not require a second parameter,
because the screen on a given com-
puter is (usually anyway) unique
and already known.

Roll Your Own
For a TFDD we write our own assign
procedure. I’ve called mine
AssignSt (Listing 2). It is mapping a
Pascal string to the Text variable.
The procedure will have a few
housekeeping chores to accom-
plish, but the power of the TFDD is
already in place.

The TTextRec is a record type
declared in SysUtils that we can
use to typecast the more common
TextFile type to give visibility to its
fields. To take advantage of its
16-byte UserData field I declared a
type called usr for typecasting that

{comma delimited data}
p := pos(’,’,StringRecord);
FirstPart := copy(StringRecord,1,pred(p));
system.delete(StringRecord,1,p);
p := pos(’,’,StringRecord);
SecondPart := copy(StringRecord,1,pred(p));
system.delete(StringRecord,1,p);
{number coming up}
p := pos(’,’,StringRecord);
temp := copy(StringRecord,1,pred(p));
system.delete(StringRecord,1,p);
{number may be left justified}
while temp[length(temp)]=’ ’ do dec(temp[0]);
{number may be right justified}
while (temp[1]=’ ’) and (temp<>’’) do system.delete(temp,1,1);
val(temp,IntegerOne,err);
if err<>0 then HandleConversionError;
p := pos(’,’,StringRecord);
ThirdPart := copy(StringRecord,1,pred(p));
system.delete(StringRecord,1,p);
{And so on...}

➤ Listing 1

procedure AssignSt(var t:TextFile; var s:string);
begin
 with TTextRec(t), usr(UserData) do begin
 Mode := fmClosed;
 BufSize := SizeOf(buffer);
 BufPtr := @buffer;
 OpenFunc := @OpenStr;
 Name[0] := #0;
 ps := @s;
 Handle := 0;
 end; {with}
end; {AssignSt}

➤ Listing 2

August 1996 The Delphi Magazine 43

field. I also declared PString so I
would not have to use another unit
just for that tiny declaration:

PString = ^string;
usr = record
 ps : PString;
 ud : array[5..16] of byte;
end;

A Text (or TextFile) variable has its
own 128-byte buffer. The TFDD
allows for the possibility that we
may need a buffer of a different
size, so also included in the record
structure is a pointer field called
BufPtr and a field in which we can
store the size of the buffer, BufSize.
Now that we have briefly consid-
ered the data structure involved,
let us see what AssignSt actually
does. First it sets the file mode as
closed, which is a good idea, since
we can assign in one step and open
later, perhaps never. I decided to
use the buffer already provided,
which is named, appropriately,
buffer. Therefore I just assigned its
size to BufSize and put its address
in BufPtr. AssignSt does not need a
name for the string device, so it just
puts a null character at the start of
the Name field. AssignSt makes the
important association between the
Text variable and the ‘device’
(string) by the simple expedient of
putting its address in the string
pointer variable that will be avail-
able to some other procedures.
Finally AssignSt sets Handle to zero.
Since this TFDD will not be access-
ing a physical file it does not need
to use the file handle for its original
purpose. Instead, it becomes
useful as an index into the string.

Grand Opening
Next we need to open the device.
The TFDD must have an open
function that will be used by reset,
rewrite and append. I called the
open function OpenStr and AssignSt
puts its address in the OpenFunc
pointer field. This open function
and several others are the hooks
into the text file system. All the
hooks are called by means of
pointer variables, so they have to
be far calls. Further, the TFDD
hooks are responsible for much of
the error mechanism, so they are

each functions returning type
integer. In each case the function
result will wind up in the InOutRes
variable. That variable has the
value that is returned and cleared
by calls to ioResult. All of the string
device driver hooks return 0: no
errors are generated, except for nu-
meric conversion errors that are
handled out of our view.

While OpenStr is a little heftier
than AssignSt, it remains fairly sim-
ple also. See Listing 3. We identify
the close function by putting its
address in the CloseFunc pointer
field. The bulk of the work is done
in the case statement. Most of that
work consists of making the proper
assignments to the InOutFunc and
FlushFunc fields. The value of the
Mode field, which AssignSt initially
made fmClosed, depends on the
way the device is opened.

In And Out
Text files can be open for either
input or output, but not both at the
same time. Access is sequential,
not random. Opening a text file is
performed by the reset, rewrite
and append procedures. Each one
sets the value of Mode and calls the

procedure indicated by the Open-
Func field. In our string device
driver, OpenFunc points to OpenStr.

If Mode has the value of fmInput
then the open function was called
by the reset procedure. In this case
OpenStr makes InOutFunc point to
InStr, which is strictly an input
function.

If Mode has the value of fmOutput
then the open function was called
by the rewrite procedure. OpenStr
makes InOutFunc point to OutStr, an
output function. Notice that Flush-
Func also points to the same func-
tion: in the output mode we want to
ensure that data is forced out, not
just hanging in a buffer until we
close.

If Mode has fmInOut for its value, it
is not appropriate for text files at
all, since they are either input or
output, but not both. Append calls
the open function with Mode set this
way merely to indicate that it was
append and not just rewrite. The
open function changes Mode to
fmOutput and puts the Handle index
past the end of the string. Of course
it also sets the InOutFunc and
FlushFunc to the address of the
OutStr function.

function OpenStr(var t:textFile):integer; far;
begin
 with TTextRec(t),usr(UserData) do begin
 CloseFunc := @CloseStr;
 case Mode of
 fmInOut : begin
 Mode := fmOutput;
 InOutFunc := @OutStr;
 FlushFunc := @OutStr;
 Handle := length(ps^);
 end;
 fmInput : begin
 InOutFunc := @InStr;
 FlushFunc := @FlushStr;
 end;
 fmOutput : begin
 InOutFunc := @OutStr;
 FlushFunc := @OutStr;
 ps^ := ’’;
 end;
 end; {case}
 end; {with}
 Result := 0; {for ioResult}
end; {OpenStr}

➤ Listing 3

function InStr(var t:textFile):integer; far;
begin
 Result := 0; {for ioResult}
 with TTextRec(t),usr(UserData) do begin
 if (BufPos<BufEnd) and (Handle<>0) then exit;
 BufPos := 0;
 BufEnd := length(ps^)-Handle;
 if BufEnd>BufSize then BufEnd := BufSize;
 move(ps^[succ(Handle)],BufPtr^,BufEnd);
 inc(Handle,BufEnd);
 end;
end; {InStr}

➤ Listing 4

44 The Delphi Magazine Issue 12

So far the routines we have ex-
amined have been purely book-
keeping measures. It is time to see
some action. The InStr function
gets data in from the device: see
Listing 4.

Again, the function returns 0 to
indicate no error. The text file sys-
tem takes care of moving data out
of the buffer into the appropriate
variable, incrementing BufPos as it
scans down the buffer. For exam-
ple, a readln(t,x) where x is an
integer variable will take data out
of the buffer until the appropriate
numeric digits have all been col-
lected. It will eat up any leading
spaces on the way. It will know that
it has finished gathering digits for
the number when it reaches a
space or a carriage return. Since we
chose readln for our example, it will
continue scanning down the buffer
until the end of the ‘device’ or it
finds a carriage return. It will also
eat a line feed if present immedi-
ately after the carriage return. The
text file system handles the data
conversion and error reporting
without requiring any code from
the programmer. (Exactly what I
was after!) So, what is the job of
InStr? Its job is to keep the buffer
supplied. The text file system will
call InStr as often as needed to
keep the buffer provided with data
until the variables in the read or
readln statement have been satis-
fied, or until there is no more data
available.

In the InStr function, Handle = 0
signals that the first buffer loading
has not happened yet (remember

what AssignSt did with Handle?).
BufPos >= BufEnd signals that it is
time to refill the buffer with BufSize
bytes. If neither condition is true,
InStr just exits. Otherwise InStr
transfers another BufSize bytes of
data from the string into the buffer,
or fewer if there are not enough
bytes left. BufEnd is set according to
the amount of data actually trans-
ferred into the buffer. BufPos is re-
set to the beginning of the buffer.
Finally, InStr sets the value of
Handle to indicate how far down the
string it has travelled, just as the
text file system adjusts BufPos to
indicate how far down the buffer it
has scanned.

OutStr (Listing 5) is the other key
function. While InStr transferred
data out of the string into the buff-
er, OutStr transfers data out of the
buffer into the string. The text file
system handles moving data from
the parameters in the write or
writeln statement, with data con-
version as needed, into the buffer,
calling on the services of OutStr as
often as necessary to keep the buff-
er from overflowing. In the output
scenario, the roles of BufPos and
BufEnd seem reversed. At the end of
each use of OutStr, BufEnd is reset.
Again, Handle keeps track of the po-
sition within the string, though it’s
not really needed in outputs, since
all the characters are added to the
end of the string which is handled
automatically by the length byte.

Finishing Up
The flush function is called when
an output sequence is done. If the

transfer of data from the parame-
ters of write or writeln has ended
with a partially filled buffer, the
flush function can send the remain-
ing data out to the device, if that is
desired. For our string device
driver, that is exactly what we
want, so FlushFunc was set (in
OpenStr) to the address of OutStr.
This final call to OutStr copies any
data remaining in the buffer to the
string. When the text file system is
performing input, rarely does the
flush function have a useful pur-
pose, but the hook is provided, just
in case. For our string device
driver, FlushFunc is not needed for
input, so OpenStr pointed it to a
do-nothing function called
FlushStr: its only job is to assure
the text file system that no error
has happened:

function FlushStr(
 var t:textFile):integer; far;
begin
 Result := 0; {for ioResult}
end; {FlushStr}

It is fitting that the close function
closes the discussion of the vari-
ous functions the string device
driver supplies. In this simple
driver, the close function just sets
Mode to fmClosed, resets Handle and
comforts the text file system with a
“no error” return value (Listing 6).

Now all that remains is to men-
tion the delim procedure and put
the string device driver unit to the
test. The purpose of delim is to con-
vert a given delimiter character in
a string into carriage returns, thus
enabling the TFDD to break up the
string into parts. Setting the undo
parameter to True allows delim to
reverse that process.

Perhaps it would have been
cleaner to convert the delimiters to
carriage returns in the buffer
within InStr, but it seemed to be a
little more efficient to perform the
operation only once on the string,
rather than several times on the
buffer. I wrote the delim procedure
in assembly for still more effi-
ciency. It performs a simple opera-
tion and each significant step is
described in the comments. See
the code in Listing 7.

function OutStr(var t:textFile):integer; far; var i : integer;
begin
 with TTextRec(t),usr(UserData) do begin
 for i := BufEnd to BufPos-1 do ps^ := ps^+BufPtr^[i];
 Handle := length(ps^);
 BufEnd := BufPos;
 end; {with}
 Result := 0; {for ioResult}
end; {OutStr}

➤ Listing 5

function CloseStr(var t:textFile):integer; far;
begin
 with TTextRec(t) do begin
 Mode := fmClosed;
 Handle := 0;
 end;
 Result := 0; {for ioResult}
end; {CloseStr}

➤ Listing 6

August 1996 The Delphi Magazine 45

This Is Only A Test
The program in Listing 8 exercises
the string device driver unit. Click-
ing the Test 1 button fires the code
in the procedure test1Buttonclick,
giving the output in Figure 1. We
use a comma as the delimiter, open
the string, break it into variously
sized parts using Read and ReadLn
returning byte and word variables. It
also shows opening for output. No-
tice that closeFile is not needed
before changing modes, because
all three open procedures close the
file first if it is open. In fact, the test
program never calls CloseFile, be-
cause the device driver uses no
DOS file handles which need clean-
ing up. The rewrite procedure
makes s a null string. Each write
then builds onto it, doing number
to string conversions as needed.
This is only for demonstration: or-
dinary string operations work just
fine in place of these outputs. Even
if you want to write to your strings,
you probably will not want to use
WriteLn, because that will add a line
feed character as well as a carriage
return.

The next few lines demonstrate
the effect of the append procedure,
which is to leave the existing string
intact and build on the end. The
procedure test2ButtonClick is
fired when the Test 2 button is
clicked. Figure 2 shows the results.
The delimiter, which delim con-
verts, is a backslash instead of a
comma. The most noteworthy
difference over the first test is:

readln(t,r);
add(FloatToStr(r));

The type for r is extended, a floating
point type. You could just as easily
use single, double or even real,
but in the adjustments of precision
you wind up with some trash digits
after a bunch of zeros [See this
month’s Clinic for an explanation.
Editor]. Use FloatToStrF to have
better control of the precision and
format of the string result.

Notice in the output that -789
and 88999 were skipped because
readln(t,r) just scanned to the
next carriage return once the vari-
able was satisfied. The string TFDD
works just like a text file on disk!

procedure delim(var s:string; c:char; undo:boolean); assembler;
asm
 {point to the string with es:di and put its length into cx}
 les di,s
 mov cl,es:di.0
 {bail out if null string}
 or cl,cl
 jz @@2
 xor ch,ch
 {search direction forward}
 cld
 {make sure length byte not tested}
 inc di
 {set up the comparison}
 mov al,c
 mov ah,13
 mov bl,undo
 or bl,bl
 {leave normal if undo false, c will become #13}
 jz @@1
 {restore if undo, #13 will become c}
 xchg al,ah
 @@1:
 {search until match found}
 repnz scasb
 {if no match here then done, got here by reading end}
 jnz @@2
 {substitute the found char}
 mov es:di.-1,ah
 {check for found and at end at the same time}
 or cl,cl
 jz @@2
 {look for next match}
 jmp @@1
 @@2:
end;

➤ Listing 7

➤ Figure 2

➤ Figure 1

An Error Test
The oopsButtonClick fires when the
Oops button is clicked and will pro-
duce a deliberate error (Figure 3).
The problem is an attempt to read
float type data into an integer type
variable. The message box appears
and the last two lines do not appear

in the memo until you close the
message box. The w variable never
gets shown. You can experiment
with several ways to handle such
errors: you could leave out the cus-
tom exception handling and let the
default exception handler take it.
Its message box will say Invalid

46 The Delphi Magazine Issue 12

unit Test1;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 Memo1: TMemo;
 test1Button: TButton;
 test2Button: TButton;
 oopsButton: TButton;
 procedure FormCreate(Sender: TObject);
 procedure test1ButtonClick(Sender: TObject);
 procedure test2ButtonClick(Sender: TObject);
 procedure oopsButtonClick(Sender: TObject);
 private
 t : TextFile;
 s : string;
 public
 end;
var
 Form1: TForm1;
implementation
uses
 sdd;
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
 Memo1.Clear;
 AssignSt(t,s);
end;
procedure TForm1.test1ButtonClick(Sender: TObject);
var
 s1,s2,s3,s4 : string[23];
 n1,n2 : byte;
 n3 : word;
begin
 s :=
 ’One Thing,after another,comma delimited,45 32 651,hike!’;
 with memo1,lines do begin
 add(’—- Start of test 1, s follows —-’);
 add(s);
 add(’—- results follow —-’);
 delim(s,’,’,false);
 reset(t);
 readln(t,s1);
 readln(t,s2);
 readln(t,s3);
 read(t,n1);
 readln(t,n2,n3);
 readln(t,s4);
 add(s1);
 add(s2);
 add(s3);
 rewrite(t);

 write(t,n1);
 add(s);
 rewrite(t);
 write(t,n2);
 add(s);
 s := ’an append attempt:’;
 append(t);
 write(t,n3);
 add(s);
 add(s4);
 end;
end;
procedure TForm1.test2ButtonClick(Sender: TObject);
var
 s1,s2 : string[23];
 r : extended;
begin
 s := ’string\13.21 -789 88999\more string’;
 with memo1,lines do begin
 add(’—- Start of test 2, s follows —-’);
 add(s);
 add(’—- results follow —-’);
 delim(s,’\’,false);
 reset(t);
 readln(t,s1); add(s1);
 readln(t,r); add(FloatToStr(r));
 readln(t,s2); add(s2);
 end;
end;
procedure TForm1.oopsButtonClick(Sender: TObject);
var
 s1,s2 : string[23];
 r : extended;
 w : word;
 l : longint;
 io : integer;
begin
 s := ’string:13.21 789.7 88999:more string’;
 with memo1,lines do begin
 add(’—- Start of oops test, s follows —-’);
 add(s);
 add(’—- results follow —-’);
 delim(s,’:’,false);
 reset(t);
 readln(t,s1); add(s1);
 read(t,r); add(FloatToStr(r));
 try
 read(t,w); add(IntToStr(w));
 except
 MessageDlg(’Wrong type’,mtInformation,[mbOk],0);
 end;
 readln(t,l); add(IntToStr(l));
 readln(t,s2); add(s2);
 end;
end;
end.

numeric input. The last two lines
will not appear at all, because the
default handler will bail out of the
block where the exception hap-
pened. Another approach would
be to turn off built-in I/O error
checking with the {$I-} compiler
directive, then you would directly
program error checking with the
ioResult function, which would
return a value of 106.

Variations
You can now move on to experi-
ment! I made delim work on the
device string itself for the sake of
efficiency. A more self-contained
(and more satisfying) approach
would be to make delim work on the
buffer and call it from within InStr.
Replace the undo parameter with a
size parameter of type byte and
pass BufSize (assuming buffers

smaller than 256 characters). Use
mov cl,size to limit the search and
remove the inc di. Add a third pa-
rameter to AssignSt: the delimiting
character. You could keep it in the
5th position in UserData. You could
allow several delimiters, passed as
a string to AssignSt. They could be
stored in adjacent places in
‘UserData with a null at the end. In
InStr you’d call delim for each

possible delimiter until the null
character was reached. You may
think of many more ideas.

Jon Jacobs is a software engineer
at Mastercomp, Inc., an industrial
automation company in Dallas.
Email him at mstrcomp@gte.net
or visit http://home1.gte.net/
mstrcomp/index.htm

➤ Figure 3

➤ Listing 8

August 1996 The Delphi Magazine 47

	Assign A Relationship
	Roll Your Own
	Grand Opening
	In and Out
	Finishing Up
	This is Only a Test
	Variations

